Суббота, 18.05.2024, 08:39
Приветствую Вас Гость | RSS

Основы теории управления

Наш опрос
Оцените мой сайт
Всего ответов: 13
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Каталог статей

Главная » Статьи » Лекции » ПРЕДИСЛОВИЕ К ТЕОРИИ УПРАВЛЕНИЯ

Предисловие к теории управления

Процессы и сигналы. Динамическим процессом, или движением, называют развитие во времени некоторого физического явления (движение механизма, тепловое явление, экономический процессы). Процессы порождают информационные потоки - вторичные процессы, несущие информацию о рассматриваемом физическом явлении, которые называется сигналами.

Сигналы, как и порождающие их процессы, существуют вне зависимости от наличия измерителей или присутствия наблюдателя. При рассмотрении сигнала принято различать его информационное содержание (о первичном процессе) и физическую природу вторичного процесса (носителя). В зависимости от физической природы носителя выделяют акустические, оптические, электрические, электромагнитные, и пр. сигналы. Природа физического носителя может не совпадать с природой первичного процесса. Так например, слиток металла может разогреваться электромагнитным излучением, а температура слитка регистрироваться по инфракрасному излучению.

В теории управления сигнал рассматривается с кибернетических позиций и отождествляется с количественной информацией об изменении физических переменных изучаемого процесса безотносительно к физической природе как первичного процесса, так и носителя сигнала. При этом учитывается, что реальный сигнал может не содержать всей информации о развитии физического явления, равно как и содержать постороннюю информацию. На информационное содержание сигналов оказывают влияние способы их кодирования, шумы и эффекты квантования.

В зависимости от способа кодирования различают аналоговые и цифровые сигналы. Для аналоговых сигналов интенсивность физического носителя пропорциональна изучаемой физической переменной. В цифровых сигналах информация представлена в виде чисел (например, в форме двоичных кодов). Вопрос адекватности информация рассматриваемой физической переменной связан с понятиями идеального и реального сигнала.

Идеальный сигнал тождественен некоторой физической переменной x(t), в то время как реальный сигнал x'(t) содержит шумы измерения или помехи d(t) (постороннюю информацию о канале связи, внешней среде или измерителе) и обычно отображается в виде:

x'(t) = x(t) + d(t).

С понятием реального сигнала связаны задачи идентификации (оценивания) динамических процессов x(t) по текущим измерениям x'(t) и вопросы фильтрации (наблюдения), сглаживания и прогнозирования.

Информационное содержание сигнала зависит и от эффектов квантования. По характеру изменения во времени процессы и сигналы подразделяются на непрерывные и дискретные. К последним, в свою очередь, относятся процессы, квантованные по уровню, и процессы, квантованные по времени.

.

Развитие процесса непрерывного времени характеризуется переменной x(t), принимающей произвольные значения из числовой области X и определенной в любые моменты времени t > to (рис. 1.1.1-а, где tо=0). К непрерывным процессам относятся непрерывное механическое движение, электрические и тепловые процессы, и т.п.

Развитие дискретного квантованного по уровню процесса характеризуется переменной x(t], принимающей строго фиксированные значения и определенной в любые моменты времени (рис. 1.1.1-б). В практических случаях можно полагать xi = iD,  i = 0, 1, 2,..., где D - приращение, или дискрета. В тех случаях, когда число состояний i достаточно велико или приращение D мало, квантованием по уровню пренебрегают.

Развитие дискретного квантованного по времени процесса (процесса дискретного времени) характеризуется переменной x(t), принимающей произвольные значения и определенной в фиксированные моменты времени ti, где i = 0, 1, 2,... (рис. 1.1.2-а). Как правило, квантование осуществляется с постоянным интервалом квантования Т, т. е. t = iТ,  i = 0, 1, 2,...  


К дискретным процессам такого рода относятся  процессы в цифровых вычислительных устройствах с тактовой частотой процессора f=1/Т, процессы в цифровых системах управления, где дискретность по времени обусловлена циклическим характером обработки информации (Т - время обновления информации в выходном регистре управляющей ЭВМ). При достаточно малых интервалах Т дискретностью по времени пренебрегают, и квантованный по времени процесс относят к процессам непрерывного времени.

К дискретным обычно относят также кусочно-постоянные процессы и сигналы, которые характеризуются переменной x(t), скачкообразно изменяющейся в фиксированные моменты времени ti (рис. 1.1.2-б).

Кибернетический блок - это блок, для которого установлены связанные причинно-следственным отношением входные и выходные сигналы. Выходной сигнал блока x1(t) несет информацию о внутреннем процессе, причиной которого является входной сигнал x2(t). Использование блока не требует знания его «устройства» и физической природы происходящих в нем процессов ("черный ящик").

В зависимости от числа входных и выходных сигналов различают одноканальные блоки (один вход, один выход), и многоканальные с несколькими входными и выходными сигналами. Блоки, у которых отсутствуют входные сигналы, называются автономными. По типу сигналов различают непрерывные, дискретные и дискретно-непрерывные блоки.

Для описания кибернетического блока используется одна из форм аналитического описания связи входных и выходных сигналов - дифференциальные и разностные уравнения, автоматные алгоритмы и проч., т. е. выражения вида

x1(t) = F(x2(t)),                                                    (1.1.1)

где F(*) - функциональный оператор. Для простейших блоков такое описание может быть получено в виде алгебраического или трансцендентного уравнения:

x1 = f(x2),                                                         (1.1.2)

где f(*) - функция.


    Пример. Имеем электронагревательную печь, температура в которой to регулируется нагревателем (рис. 1.1.3-а). Входным сигналом этого блока является напряжение нагревателя x2(t) = U(t), а выходным - температура x1(t) = to(t). Связь выхода и входа описывается функциональным оператором (дифференциальным уравнением):

T dx1(t)/dt + x1(t) = x2(t),

где Т - постоянная времени, К - коэффициент передачи. Если напряжение нагревателя постоянно, т. е. х2 = U = const, и x1(0) = 0, то выходная переменная находится как (рис. 1.1.3)

x1(t) = K(1-exp(-t/T))x2(t).

В установившемся режиме, после окончания переходных процессов в печи (при t →∞), связь выходного и входного сигналов описывается простейшим алгебраическим уравнением вида (1.1.2), т. е.: x1 = Kx2.

Аналогичные выражения для описания связей входных и выходных переменных получаются для электрической RC-цепи (рис. 1.1.3- б). Здесь x1(t} = Uвых(t) - выходное напряжение схемы, x2(t) = Uвх(t) — входное напряжение, Т = RC и К = 1.

С понятием кибернетического блока связаны следующие задачи:

идентификация - нахождение выражения (1.1.1), связывающего сигналы x2(t) и x1(t);

управление - определение входного сигнала x2(t), обеспечивающего получение заданного выходного сигнала x1(t) в предположении, что описание блока задано.

Кибернетическая система - это упорядоченная совокупность кибернетических блоков, связанных между собой информационными каналами. Связи между блоками носят сигнальный (информационный) характер.

Для описания системы необходимо получить аналитические зависимости, описывающие каждый из блоков в отдельности, и связи между ними. После преобразований может быть получено общее (эквивалентное) описание системы как составного кибернетического блока с входным сигналом и выходным сигналом. В зависимости от числа входных и выходных сигналов различают одноканальные системы (с одним входом и одним выходом) и многоканальные системы с несколькими входными и выходными сигналами.

По типу сигналов и блоков в системе различают непрерывные, дискретные и дискретно-непрерывные системы, причем последние содержат как непрерывные, так и дискретные блоки.

Для кибернетической системы можно определить следующие задачи:

• анализ системы, т. е. определение связи между ее входом и выходом в виде алгебраического или дифференциального уравнения, а также нахождение показателей качества системы (быстродействия, точности и т. д.);

• управление, или синтез системы, т. е. нахождение блоков и связей между ними, обеспечивающих получение заданной связи входных и выходных сигналов либо заданных показателей качества.

Наиболее распространенным типом дискретно-непрерывных систем являются цифровые системы, в состав которых входят цифровые вычислительные устройства - ЭВМ и цифровые контроллеры.

Категория: ПРЕДИСЛОВИЕ К ТЕОРИИ УПРАВЛЕНИЯ | Добавил: Дима (01.06.2011)
Просмотров: 499 | Комментарии: 3 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
Поиск
Счётчик визитов

Copyright MyCorp © 2024
Конструктор сайтов - uCoz


Яндекс.Метрика